亚洲аv天堂无码,久久aⅴ无码一区二区三区,96免费精品视频在线观看,国产2021精品视频免费播放,国产喷水在线观看,奇米影视久久777中文字幕 ,日韩在线免费,91spa国产无码
       
      Astronomers capture most distant star ever seen
                       Source: Xinhua | 2018-04-03 03:23:41 | Editor: huaxia

      Icarus, whose official name is MACS J1149+2223 Lensed Star 1, is the farthest individual star ever seen. It is only visible because it is being magnified by the gravity of a massive galaxy cluster, located about 5 billion light-years from Earth. Called MACS J1149+2223, this cluster, shown at left, sits between Earth and the galaxy that contains the distant star. The panels at the right show the view in 2011, without Icarus visible, compared with the star's brightening in 2016. (Credit: NASA, ESA, and P. Kelly)

      WASHINGTON, April 2 (Xinhua) -- American astronomers have captured the most distant normal star ever observed, some 9 billion light years from Earth, thanks to a rare cosmic alignment.

      The study, published on Monday online in the journal Nature Astronomy, revealed the discovery of a star called Icarus, magnified by gravitational lensing by over 2,000 times.

      Astronomers routinely study galaxies much farther away, visible because they glow with the brightness of billions of stars. They also managed to study supernova, often brighter than the galaxy in which it sits.

      However, for a distance of about 100 million light years, the stars in these galaxies are impossible to make out individually.

      But a phenomenon called gravitational lensing, the bending of light by massive galaxy clusters in the line of sight, can magnify the distant universe and make dim, far away objects visible.

      The single star was discovered in NASA Hubble Space Telescope images taken in late April of 2016 and as recently as April 2017.

      "You can see individual galaxies out there, but this star is at least 100 times farther away than the next individual star we can study, except for supernova explosions," said Patrick Kelly at the University of Minnesota, Twin Cities, the paper's first author.

      These observations can provide a rare look at how stars evolve, especially the most luminous ones.

      "For the first time ever we're seeing an individual normal star - not a supernova, not a gamma ray burst, but a single stable star - at a distance of nine billion light years," said Alex Filippenko, a professor of astronomy at UC Berkeley and one of many co-authors of the report.

      The B-type star Icarus is much larger, more massive, hotter and possibly hundreds of thousands of times intrinsically brighter than our Sun.

      According to the researchers, an extended lens, like a galaxy cluster, can only magnify a background object up to 50 times, but smaller objects can magnify much more.

      A single star in a foreground lens, if precisely aligned with a background star, can magnify the background star thousands of times.

      In this case, a star about the size of our sun briefly passed directly through the line of sight between the distant star Icarus and Hubble, boosting its brightness significantly.

      Also, if the alignment was perfect, that single star within the cluster turned the light from the distant star into an "Einstein ring": a halo of light created when light from the distant star bends around all sides of the lensing star.

      The ring is too small to discern from this distance, but the effect made the star easily visible by magnifying its apparent brightness.

      The astronomers predict that Icarus will be magnified many times over the next decade as cluster stars move around, perhaps increasing its brightness as much as 10,000 times.

      Back to Top Close
      Xinhuanet

      Astronomers capture most distant star ever seen

      Source: Xinhua 2018-04-03 03:23:41

      Icarus, whose official name is MACS J1149+2223 Lensed Star 1, is the farthest individual star ever seen. It is only visible because it is being magnified by the gravity of a massive galaxy cluster, located about 5 billion light-years from Earth. Called MACS J1149+2223, this cluster, shown at left, sits between Earth and the galaxy that contains the distant star. The panels at the right show the view in 2011, without Icarus visible, compared with the star's brightening in 2016. (Credit: NASA, ESA, and P. Kelly)

      WASHINGTON, April 2 (Xinhua) -- American astronomers have captured the most distant normal star ever observed, some 9 billion light years from Earth, thanks to a rare cosmic alignment.

      The study, published on Monday online in the journal Nature Astronomy, revealed the discovery of a star called Icarus, magnified by gravitational lensing by over 2,000 times.

      Astronomers routinely study galaxies much farther away, visible because they glow with the brightness of billions of stars. They also managed to study supernova, often brighter than the galaxy in which it sits.

      However, for a distance of about 100 million light years, the stars in these galaxies are impossible to make out individually.

      But a phenomenon called gravitational lensing, the bending of light by massive galaxy clusters in the line of sight, can magnify the distant universe and make dim, far away objects visible.

      The single star was discovered in NASA Hubble Space Telescope images taken in late April of 2016 and as recently as April 2017.

      "You can see individual galaxies out there, but this star is at least 100 times farther away than the next individual star we can study, except for supernova explosions," said Patrick Kelly at the University of Minnesota, Twin Cities, the paper's first author.

      These observations can provide a rare look at how stars evolve, especially the most luminous ones.

      "For the first time ever we're seeing an individual normal star - not a supernova, not a gamma ray burst, but a single stable star - at a distance of nine billion light years," said Alex Filippenko, a professor of astronomy at UC Berkeley and one of many co-authors of the report.

      The B-type star Icarus is much larger, more massive, hotter and possibly hundreds of thousands of times intrinsically brighter than our Sun.

      According to the researchers, an extended lens, like a galaxy cluster, can only magnify a background object up to 50 times, but smaller objects can magnify much more.

      A single star in a foreground lens, if precisely aligned with a background star, can magnify the background star thousands of times.

      In this case, a star about the size of our sun briefly passed directly through the line of sight between the distant star Icarus and Hubble, boosting its brightness significantly.

      Also, if the alignment was perfect, that single star within the cluster turned the light from the distant star into an "Einstein ring": a halo of light created when light from the distant star bends around all sides of the lensing star.

      The ring is too small to discern from this distance, but the effect made the star easily visible by magnifying its apparent brightness.

      The astronomers predict that Icarus will be magnified many times over the next decade as cluster stars move around, perhaps increasing its brightness as much as 10,000 times.

      010020070750000000000000011105091370836751
      主站蜘蛛池模板: 中文字幕与邻居少妇性刺激| 91天堂素人精品系列全集亚洲| 国产精品99精品一区二区三区∴ | av网址不卡免费在线观看| 亚洲人成网站在线播放小说| 国产午夜亚洲精品福利| 黄色一级片免费观看| 久久精品无码一区二区三区不卡| 资源县| 中文字幕av一区二区三区| 亚洲欧美成人aⅴ在线| 日本五月天婷久久网站| 国产av专区一区二区三区| 日本一区二区三区观看视频| 亚洲成a人片在线观看中文!!! | 国产成人精品久久亚洲高清| 99精品国产第一福利网站| 蜜臀98精品国产免费观看| 精品国偷自产在线视频| 国产亚洲美女精品久久久2020| 婷婷开心五月综合基地| 国产精品视频第一区二区三区| 不卡AV中文字幕手机看| 亚洲中文字幕一区二区不卡| 日韩人妻一级av一区二区| 国产精品美女久久久久浪潮AVⅤ| 97视频| 中文字幕日本丰满人妻| 高清免费日本一区二区| 青青草99久久精品国产综合| 少妇bbb搡bbbb搡bbbb| 国产精品一区久久av| 精品亚洲男人天堂av| 人妻丰满av无码中文字幕| 精品日韩精品国产另类专区| 久久国产香蕉一区精品天美| 人妻中出精品久久久一区二| 国产91丝袜在线观看| 蜜桃视频成人专区在线观看| 中文字幕人妻一区二区三区四区 | 亚洲成AV人片一区二区|