亚洲аv天堂无码,久久aⅴ无码一区二区三区,96免费精品视频在线观看,国产2021精品视频免费播放,国产喷水在线观看,奇米影视久久777中文字幕 ,日韩在线免费,91spa国产无码
       
      Astronomers capture most distant star ever seen
                       Source: Xinhua | 2018-04-03 03:23:41 | Editor: huaxia

      Icarus, whose official name is MACS J1149+2223 Lensed Star 1, is the farthest individual star ever seen. It is only visible because it is being magnified by the gravity of a massive galaxy cluster, located about 5 billion light-years from Earth. Called MACS J1149+2223, this cluster, shown at left, sits between Earth and the galaxy that contains the distant star. The panels at the right show the view in 2011, without Icarus visible, compared with the star's brightening in 2016. (Credit: NASA, ESA, and P. Kelly)

      WASHINGTON, April 2 (Xinhua) -- American astronomers have captured the most distant normal star ever observed, some 9 billion light years from Earth, thanks to a rare cosmic alignment.

      The study, published on Monday online in the journal Nature Astronomy, revealed the discovery of a star called Icarus, magnified by gravitational lensing by over 2,000 times.

      Astronomers routinely study galaxies much farther away, visible because they glow with the brightness of billions of stars. They also managed to study supernova, often brighter than the galaxy in which it sits.

      However, for a distance of about 100 million light years, the stars in these galaxies are impossible to make out individually.

      But a phenomenon called gravitational lensing, the bending of light by massive galaxy clusters in the line of sight, can magnify the distant universe and make dim, far away objects visible.

      The single star was discovered in NASA Hubble Space Telescope images taken in late April of 2016 and as recently as April 2017.

      "You can see individual galaxies out there, but this star is at least 100 times farther away than the next individual star we can study, except for supernova explosions," said Patrick Kelly at the University of Minnesota, Twin Cities, the paper's first author.

      These observations can provide a rare look at how stars evolve, especially the most luminous ones.

      "For the first time ever we're seeing an individual normal star - not a supernova, not a gamma ray burst, but a single stable star - at a distance of nine billion light years," said Alex Filippenko, a professor of astronomy at UC Berkeley and one of many co-authors of the report.

      The B-type star Icarus is much larger, more massive, hotter and possibly hundreds of thousands of times intrinsically brighter than our Sun.

      According to the researchers, an extended lens, like a galaxy cluster, can only magnify a background object up to 50 times, but smaller objects can magnify much more.

      A single star in a foreground lens, if precisely aligned with a background star, can magnify the background star thousands of times.

      In this case, a star about the size of our sun briefly passed directly through the line of sight between the distant star Icarus and Hubble, boosting its brightness significantly.

      Also, if the alignment was perfect, that single star within the cluster turned the light from the distant star into an "Einstein ring": a halo of light created when light from the distant star bends around all sides of the lensing star.

      The ring is too small to discern from this distance, but the effect made the star easily visible by magnifying its apparent brightness.

      The astronomers predict that Icarus will be magnified many times over the next decade as cluster stars move around, perhaps increasing its brightness as much as 10,000 times.

      Back to Top Close
      Xinhuanet

      Astronomers capture most distant star ever seen

      Source: Xinhua 2018-04-03 03:23:41

      Icarus, whose official name is MACS J1149+2223 Lensed Star 1, is the farthest individual star ever seen. It is only visible because it is being magnified by the gravity of a massive galaxy cluster, located about 5 billion light-years from Earth. Called MACS J1149+2223, this cluster, shown at left, sits between Earth and the galaxy that contains the distant star. The panels at the right show the view in 2011, without Icarus visible, compared with the star's brightening in 2016. (Credit: NASA, ESA, and P. Kelly)

      WASHINGTON, April 2 (Xinhua) -- American astronomers have captured the most distant normal star ever observed, some 9 billion light years from Earth, thanks to a rare cosmic alignment.

      The study, published on Monday online in the journal Nature Astronomy, revealed the discovery of a star called Icarus, magnified by gravitational lensing by over 2,000 times.

      Astronomers routinely study galaxies much farther away, visible because they glow with the brightness of billions of stars. They also managed to study supernova, often brighter than the galaxy in which it sits.

      However, for a distance of about 100 million light years, the stars in these galaxies are impossible to make out individually.

      But a phenomenon called gravitational lensing, the bending of light by massive galaxy clusters in the line of sight, can magnify the distant universe and make dim, far away objects visible.

      The single star was discovered in NASA Hubble Space Telescope images taken in late April of 2016 and as recently as April 2017.

      "You can see individual galaxies out there, but this star is at least 100 times farther away than the next individual star we can study, except for supernova explosions," said Patrick Kelly at the University of Minnesota, Twin Cities, the paper's first author.

      These observations can provide a rare look at how stars evolve, especially the most luminous ones.

      "For the first time ever we're seeing an individual normal star - not a supernova, not a gamma ray burst, but a single stable star - at a distance of nine billion light years," said Alex Filippenko, a professor of astronomy at UC Berkeley and one of many co-authors of the report.

      The B-type star Icarus is much larger, more massive, hotter and possibly hundreds of thousands of times intrinsically brighter than our Sun.

      According to the researchers, an extended lens, like a galaxy cluster, can only magnify a background object up to 50 times, but smaller objects can magnify much more.

      A single star in a foreground lens, if precisely aligned with a background star, can magnify the background star thousands of times.

      In this case, a star about the size of our sun briefly passed directly through the line of sight between the distant star Icarus and Hubble, boosting its brightness significantly.

      Also, if the alignment was perfect, that single star within the cluster turned the light from the distant star into an "Einstein ring": a halo of light created when light from the distant star bends around all sides of the lensing star.

      The ring is too small to discern from this distance, but the effect made the star easily visible by magnifying its apparent brightness.

      The astronomers predict that Icarus will be magnified many times over the next decade as cluster stars move around, perhaps increasing its brightness as much as 10,000 times.

      010020070750000000000000011105091370836751
      主站蜘蛛池模板: 东京热加勒比一区四区| 欧洲亚洲精品免费二区| 亚洲av午夜精品一区二区三区| 国产激情无码Av毛片久久| 最新欧美一级视频| 欧美日一区二区三区| 中文字幕乱码一区二区免费| 国产后入内射在线观看| 色婷婷精品综合久久狠狠| 国产成人精品自拍视频| 欧美成人a视频免费专区| 不卡色老大久久综合网| 欧美牲交a欧美牲交aⅴ| 人人爽亚洲aⅴ人人爽av人人片| 国产目拍亚洲精品区一区| 亚洲国产成人精品女人久久久| 波多野结衣在线播放一区| 午夜免费的国产片在线观看 | 国产在线精品国自产拍影院同性 | 国产成人综合久久三区北岛玲 | 日本五月天婷久久网站| 国产成人无码Av在线播放无广告| 人妻精品久久中文字幕 | 亚洲国产精品午夜电影| 一本一道波多野结衣av黑人| 精品一区二区三区中文字幕在线| 色就色中文字幕在线视频| 91综合在线| 色婷婷激情在线一区二区三区 | 在线精品亚洲一区二区绿巨人| 黔西县| 亚洲高清国产品国语在线观看| 伊人色综合久久天天五月婷| 未满十八勿入AV网免费| av网址手机在线免费观看| 亚洲色无码中文字幕| 久久亚洲日本激情战少妇| 亚洲中文字幕日产喷水| 大肥婆老熟女一区二区精品| 国产精品亚洲五月天高清| 老司机午夜精品视频你懂的|