"/>

      亚洲аv天堂无码,久久aⅴ无码一区二区三区,96免费精品视频在线观看,国产2021精品视频免费播放,国产喷水在线观看,奇米影视久久777中文字幕 ,日韩在线免费,91spa国产无码

      Scientists teach computers to recognize cells, using AI

      Source: Xinhua    2018-04-13 00:14:10

      WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

      A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

      It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

      The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

      Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

      They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

      "This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

      The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

      It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

      Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

      The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

      They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

      "The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

      "This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

      "This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

      Editor: yan
      Related News
      Xinhuanet

      Scientists teach computers to recognize cells, using AI

      Source: Xinhua 2018-04-13 00:14:10

      WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

      A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

      It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

      The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

      Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

      They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

      "This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

      The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

      It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

      Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

      The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

      They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

      "The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

      "This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

      "This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

      [Editor: huaxia]
      010020070750000000000000011105521371069391
      主站蜘蛛池模板: 毛片无遮挡高清免费久久| 日韩中文字幕在线乱码| 精品人妻一区二区三区蜜桃| 国产精品免费av一区二区| 成人无码网www在线观看| 欧美性乌克兰粗大猛烈17p| 亚洲综合日韩中文字幕| 少妇被爽到自拍高潮在线观看| 南通市| 99久久亚洲国产高清观看| 少妇性XXXXXXXXX色| 99热精品69堂国产| 99久久久精品国产性黑人| 一本大道久久精品一本大道久久| 强奷白丝美女在线观看| 亚洲精品tv久久久久久久久| 最新中文乱码字字幕在线| 淮滨县| 国产精品麻豆A啊在线观看 | 高清dvd碟片 生活片| 少女たちよ在线观看动漫4| 国产精品后入内射视频| 亚洲一区二区三区免费av在线| 黑人玩弄漂亮少妇高潮大叫| 亚洲aaa视频| 亚洲AV无码日韩综合欧亚| 国产精品亚洲综合一区| 久女女热精品视频在线观看 | 久久精品美女久久| 日本精品免费一区二区三区| 日韩熟女一区二区三区| 一边摸一边抽搐一进一出视频| 国产精品亚洲一区二区三区| 一区二区三区婷婷在线| 少妇肉欲系列1000篇| 国产偷v国产偷v亚洲高清| 91久久精品亚洲一区二区三区| 欧美日韩亚洲国产主播第一区| 亚洲精品中文字幕乱码二区 | 成人免费视频视频在线观看 免费| 2020国产欧洲精品网站|