"/>

      亚洲аv天堂无码,久久aⅴ无码一区二区三区,96免费精品视频在线观看,国产2021精品视频免费播放,国产喷水在线观看,奇米影视久久777中文字幕 ,日韩在线免费,91spa国产无码

      Chinese, American scientists develop tiny gel balls to predict cancer

      Source: Xinhua    2018-05-15 00:52:35

      WASHINGTON, May 14 (Xinhua) -- Chinese and American scientists have developed a new technique that uses tiny elastic balls filled with fluorescent nanoparticles to better understand the mechanical forces between cells, a move that may predict cancer.

      In a study published on Monday in the journal of Nature Communication, researchers from Huazhong University of Science and Technology and the University of Illinois at Urbana-Champaign demonstrated the quantification of 3-D forces within cells living in petri dishes as well as live specimens.

      This research may unlock some of the mysteries related to embryonic development and cancer stem cells, like tumor-repopulating cells.

      According the researchers, scientists previously struggled to quantify the forces called tractions that push, pull and squeeze cells throughout their lifecycles because the tools available to measure force were not small enough to fit into intercellular spaces or sensitive enough to detect the miniscule movements within cell colonies.

      Although small on a human scale, the traction plays a fundamental role in cell physiology.

      "If we place a single cell in a medium within a petri dish it will not survive for long, even if we provide all of the nutrients needed," said Wang Ning, a mechanical science and engineering professor at the Huazhong university. "The cells fail to form any sort of tissue because there is no support or scaffolding on which to build."

      As cells grow and reproduce, they exert forces on each other while competing for space. The team found that if they inject their tiny elastic spheres into early stage embryos of zebrafish and colonies of melanoma cells of mice in petri dishes, the spheres experience the forces.

      "The cells do not seem to mind the intrusion," Wang said. "The spheres are made of a nontoxic microgel and even though the cells will push them around, they do not seem to interfere with development."

      To measure the amount of force imposed on the cells, the team placed fluorescent nanoparticles inside of the spheres.

      When the cells squeeze the spheres, the nanoparticles all move the same amount per area of force. The researchers can then measure the motions of the glowing particles using fluorescent light microscopy to calculate the amount of force exerted on the spheres and cells.

      Using this technique, the team has marked the first successful measurement of all three types of force, compression, tension and shear, in all three dimensions, Wang said.

      This ability to quantify force in cells may be very important to cancer cell research, Wang said.

      The team found that when melanoma tumor cells of mice in vitro begin to reproduce from a single cell to about 100 to 200 cells, compressive stress does not increase.

      "We thought that cancer cells would generate more pressure at this early growth stage while the mass of the tumor increases, as we observed in zebrafish embryos, but they do not," Wang said. "We suspect that the cancer cells begin to spread out or metastasize right after this stage."

      Primary tumors are usually not deadly, Wang said. The real killer appears to be the spread of tumor-repopulating cells from primary tumors into soft tissues with low intercellular tractions.

      "Although the underlying mechanism for metastasis is unclear, we have hypothesized that tumor-repopulating cells spread very rapidly in these secondary soft tissues. Having the ability to measure changes in tractions at the intercellular level may serve as an early cancer-detection tool," Wang said.

      This microgel sphere technology may also help unravel the mechanisms behind a metastasis-halting synthetic drug recently described by Wang and his colleagues.

      Editor: Mu Xuequan
      Related News
      Xinhuanet

      Chinese, American scientists develop tiny gel balls to predict cancer

      Source: Xinhua 2018-05-15 00:52:35

      WASHINGTON, May 14 (Xinhua) -- Chinese and American scientists have developed a new technique that uses tiny elastic balls filled with fluorescent nanoparticles to better understand the mechanical forces between cells, a move that may predict cancer.

      In a study published on Monday in the journal of Nature Communication, researchers from Huazhong University of Science and Technology and the University of Illinois at Urbana-Champaign demonstrated the quantification of 3-D forces within cells living in petri dishes as well as live specimens.

      This research may unlock some of the mysteries related to embryonic development and cancer stem cells, like tumor-repopulating cells.

      According the researchers, scientists previously struggled to quantify the forces called tractions that push, pull and squeeze cells throughout their lifecycles because the tools available to measure force were not small enough to fit into intercellular spaces or sensitive enough to detect the miniscule movements within cell colonies.

      Although small on a human scale, the traction plays a fundamental role in cell physiology.

      "If we place a single cell in a medium within a petri dish it will not survive for long, even if we provide all of the nutrients needed," said Wang Ning, a mechanical science and engineering professor at the Huazhong university. "The cells fail to form any sort of tissue because there is no support or scaffolding on which to build."

      As cells grow and reproduce, they exert forces on each other while competing for space. The team found that if they inject their tiny elastic spheres into early stage embryos of zebrafish and colonies of melanoma cells of mice in petri dishes, the spheres experience the forces.

      "The cells do not seem to mind the intrusion," Wang said. "The spheres are made of a nontoxic microgel and even though the cells will push them around, they do not seem to interfere with development."

      To measure the amount of force imposed on the cells, the team placed fluorescent nanoparticles inside of the spheres.

      When the cells squeeze the spheres, the nanoparticles all move the same amount per area of force. The researchers can then measure the motions of the glowing particles using fluorescent light microscopy to calculate the amount of force exerted on the spheres and cells.

      Using this technique, the team has marked the first successful measurement of all three types of force, compression, tension and shear, in all three dimensions, Wang said.

      This ability to quantify force in cells may be very important to cancer cell research, Wang said.

      The team found that when melanoma tumor cells of mice in vitro begin to reproduce from a single cell to about 100 to 200 cells, compressive stress does not increase.

      "We thought that cancer cells would generate more pressure at this early growth stage while the mass of the tumor increases, as we observed in zebrafish embryos, but they do not," Wang said. "We suspect that the cancer cells begin to spread out or metastasize right after this stage."

      Primary tumors are usually not deadly, Wang said. The real killer appears to be the spread of tumor-repopulating cells from primary tumors into soft tissues with low intercellular tractions.

      "Although the underlying mechanism for metastasis is unclear, we have hypothesized that tumor-repopulating cells spread very rapidly in these secondary soft tissues. Having the ability to measure changes in tractions at the intercellular level may serve as an early cancer-detection tool," Wang said.

      This microgel sphere technology may also help unravel the mechanisms behind a metastasis-halting synthetic drug recently described by Wang and his colleagues.

      [Editor: huaxia]
      010020070750000000000000011105091371788141
      主站蜘蛛池模板: 日本在线免费观看一二区视频| 亚洲中文字幕国产综合| 亚洲色欲在线播放一区| 亚洲一区二区精品在线看| 亚洲av激情久久精品人| 免费看的一级黄色片永久| AV一本久道久久波多野结衣| 亚洲%20欧洲%20日韩%20综合二区| 日本一区二区三区四区在线看| 亚洲天堂免费一二三四区| 日本久久夜夜一本婷婷| 少妇被搞高潮在线免费观看| 亚洲午夜福利精品久久| 中国浓毛少妇毛茸茸| 午夜一区二区三区视频| 中文字幕少妇人妻视频| 中文亚洲成a人片在线观看| 一区二区三区久久含羞草| 成人亚洲欧美丁香在线观看| 一片内射视频在线观看| 亚洲综合偷自成人网第页色| 欧美大胆老熟妇乱子伦视频| 人摸人人人澡人人超碰手机版| 成人国产在线播放自拍| 一本一道波多野结衣av中文| 免费一级欧美大片久久网| 孕妇特级毛片ww无码内射| 亚洲AⅤ无码国产精品| 国产成人综合久久三区北岛玲| 久久精品无码一区二区三区蜜费| 欧美506070老妇乱子伦| 98精品国产综合久久久久久欧美| 色综合久久三十路人妻蜜臀av| 亚洲精品区二区三区蜜桃| 色综合久久综合久鬼色88| 性色av一区二区三区| 淫妇日韩中文字幕在线| 国产成人亚洲综合无码精品| 欧美性乌克兰粗大猛烈17p| 亚洲国产日韩一区三区| 江陵县|