亚洲аv天堂无码,久久aⅴ无码一区二区三区,96免费精品视频在线观看,国产2021精品视频免费播放,国产喷水在线观看,奇米影视久久777中文字幕 ,日韩在线免费,91spa国产无码
       
      Insect robot developed with flapping wings but not a leash
                       Source: Xinhua | 2018-05-16 21:39:34 | Editor: huaxia


      RoboFly, the first wireless insect-sized flying robot, is slightly heavier than a toothpick. (Credit: Mark Stone/University of Washington)

      WASHINGTON, May 15 (Xinhua) -- Engineers at the University of Washington developed a robotic insect slightly heavier than a toothpick and powered by a laser beam.

      The robot called "RoboFly" with independent flaps used a tiny onboard circuit that converts the laser energy into enough electricity to operate its wings, according to a news release of the university on Tuesday.

      "Before now, the concept of wireless insect-sized flying robots was science fiction. Would we ever be able to make them work without needing a wire?" said Sawyer Fuller, an assistant professor with the university's Department of Mechanical Engineering. "Our new wireless RoboFly shows they're much closer to real life."


      To make RoboFly wireless, the engineers designed a flexible circuit (yellow) with a boost converter (copper coil and black boxes at left) that boosts the seven volts coming from the photovoltaic cell into the 240 volts needed for flight. This circuit also has a microcontroller brain (black square box in the top right) that lets RoboFly control its wings. (Credit: Mark Stone/University of Washington)

      The engineers said the engineering challenge was the flapping since wing flapping was a power-hungry process, and both the power source and the controller that directs the wings were too big and bulky to ride aboard a tiny robot.

      So Fuller's previous robotic insect model had a leash, receiving power and control through wires from the ground.

      Now, Fuller's team used a narrow invisible laser beam to power their robot. They pointed the laser beam at a photovoltaic cell, which is attached above RoboFly and converts the laser light into electricity.

      However, the laser alone does not provide enough voltage to move the wings. So they designed a circuit that boosted the seven volts coming out of the photovoltaic cell up to the 240 volts needed for flight.

      The controller sends voltage in waves to mimic the fluttering of a real insect's wings.

      "It uses pulses to shape the wave," said Johannes James, a mechanical engineering doctoral student in the university.

      "To make the wings flap forward swiftly, it sends a series of pulses in rapid succession and then slows the pulsing down as you get near the top of the wave. And then it does this in reverse to make the wings flap smoothly in the other direction," said James.

      Also, the engineers added a micro-controller to the circuit to control over its wings.

      "The micro-controller acts like a real fly's brain telling wing muscles when to fire," said Vikram Iyer, a doctoral student in the university' s Department of Electrical Engineering. "On RoboFly, it tells the wings things like 'flap hard now' or 'don't flap.'"


      To power RoboFly the engineers pointed an invisible laser beam (shown here in red laser) at a photovoltaic cell, which is attached above the robot and converts the laser light into electricity. (Credit: Mark Stone/University of Washington)

      For now, RoboFly can only take off and land. Once its photovoltaic cell is out of the direct line of sight of the laser, the robot runs out of power and lands.

      But the team hoped to soon be able to steer the laser so that RoboFly could hover and fly around.

      Future versions could use tiny batteries or harvest energy from radio frequency signals, according to engineers.

      "I'd really like to make one that finds methane leaks," Fuller said. "If these robots can make it easy to find leaks, they will be much more likely to be patched up, which will reduce greenhouse emissions."

      The team will present its findings on May 23 at the International Conference on Robotics and Automation in Brisbane, Australia.

      Back to Top Close
      Xinhuanet

      Insect robot developed with flapping wings but not a leash

      Source: Xinhua 2018-05-16 21:39:34


      RoboFly, the first wireless insect-sized flying robot, is slightly heavier than a toothpick. (Credit: Mark Stone/University of Washington)

      WASHINGTON, May 15 (Xinhua) -- Engineers at the University of Washington developed a robotic insect slightly heavier than a toothpick and powered by a laser beam.

      The robot called "RoboFly" with independent flaps used a tiny onboard circuit that converts the laser energy into enough electricity to operate its wings, according to a news release of the university on Tuesday.

      "Before now, the concept of wireless insect-sized flying robots was science fiction. Would we ever be able to make them work without needing a wire?" said Sawyer Fuller, an assistant professor with the university's Department of Mechanical Engineering. "Our new wireless RoboFly shows they're much closer to real life."


      To make RoboFly wireless, the engineers designed a flexible circuit (yellow) with a boost converter (copper coil and black boxes at left) that boosts the seven volts coming from the photovoltaic cell into the 240 volts needed for flight. This circuit also has a microcontroller brain (black square box in the top right) that lets RoboFly control its wings. (Credit: Mark Stone/University of Washington)

      The engineers said the engineering challenge was the flapping since wing flapping was a power-hungry process, and both the power source and the controller that directs the wings were too big and bulky to ride aboard a tiny robot.

      So Fuller's previous robotic insect model had a leash, receiving power and control through wires from the ground.

      Now, Fuller's team used a narrow invisible laser beam to power their robot. They pointed the laser beam at a photovoltaic cell, which is attached above RoboFly and converts the laser light into electricity.

      However, the laser alone does not provide enough voltage to move the wings. So they designed a circuit that boosted the seven volts coming out of the photovoltaic cell up to the 240 volts needed for flight.

      The controller sends voltage in waves to mimic the fluttering of a real insect's wings.

      "It uses pulses to shape the wave," said Johannes James, a mechanical engineering doctoral student in the university.

      "To make the wings flap forward swiftly, it sends a series of pulses in rapid succession and then slows the pulsing down as you get near the top of the wave. And then it does this in reverse to make the wings flap smoothly in the other direction," said James.

      Also, the engineers added a micro-controller to the circuit to control over its wings.

      "The micro-controller acts like a real fly's brain telling wing muscles when to fire," said Vikram Iyer, a doctoral student in the university' s Department of Electrical Engineering. "On RoboFly, it tells the wings things like 'flap hard now' or 'don't flap.'"


      To power RoboFly the engineers pointed an invisible laser beam (shown here in red laser) at a photovoltaic cell, which is attached above the robot and converts the laser light into electricity. (Credit: Mark Stone/University of Washington)

      For now, RoboFly can only take off and land. Once its photovoltaic cell is out of the direct line of sight of the laser, the robot runs out of power and lands.

      But the team hoped to soon be able to steer the laser so that RoboFly could hover and fly around.

      Future versions could use tiny batteries or harvest energy from radio frequency signals, according to engineers.

      "I'd really like to make one that finds methane leaks," Fuller said. "If these robots can make it easy to find leaks, they will be much more likely to be patched up, which will reduce greenhouse emissions."

      The team will present its findings on May 23 at the International Conference on Robotics and Automation in Brisbane, Australia.

      010020070750000000000000011100001371841721
      主站蜘蛛池模板: 国产精品区在线和狗狗| 亚洲中文字幕一区二区| 亚洲视频一区| 97在线碰| 国产精品三级国产精品高| 中文字幕AV无码一二三区电影 | 久久精品国产亚洲AⅤ无码剧情| 国产亚洲高清在线精品不卡| 无码AV无码天堂资源网影音先锋| 亚洲中文字幕在线爆乳| 国产精品99一区不卡| 色综合久久婷婷88| 欧美亚洲中日韩中文字幕在线 | 久久久久亚洲Av片无码一区| 中国明星xxxx性裸交| 欧美一区二区三区香蕉视| 精品成人av一区二区三区在线| 特级欧美AAAAAAA免费观看| 日本精品极品视频在线| 妺妺跟我一起洗澡没忍住| 囯产精品无码va一区二区| 高清高速无码一区二区| 人妻少妇精品视频中文字幕国语| 饶平县| 亚洲精品白浆高清久久| 亚洲爆乳大丰满无码专区| 无码无在线观看| 男人av天堂专区| 欧美日韩在线亚洲综合国产人| 国产一区日韩二区三区| 亚洲精品亚洲人成在线| 亚洲天堂日韩av在线综合 | 亚洲一区二区三区在线视频观看 | av在线亚洲欧洲日产一区二区| 国产精品卡一卡二卡三| 国产精品自拍资源网在线观看 | 人妻免费久久久久久久了| 一区二区三区在线视频在线观看| 中文字幕一区二区人妻痴汉电车| 青青草国产成人在线视频| 日本丰满妇人成熟免费中文字幕|